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CHAPTER 09: EULER-BERNOULLI'S BEAM THEOREM
EULER-BERNOULLI'S BEAM IN FEM FORM

In this chapter, let's solve Euler-Bernoulli's beam equation by FEM. Let’s use the following cantilever
problem.

u(x)

f(x) v

ANRNNAN

The equation of the above cantilever beam by Euler-Bernoulli’'s beam theorem (skipping the explanation of
this theory) will be 4™ order differential equation.

4
£1-d U() = F(X) 2 0 oot Eq.09-1
dx*
u(O) -0 Essential Boundary Conditions
u(0)=0
d 9 40)=
J Sou0)=0 5 u0)=0
2 Natural Boundary Conditions
El L)=M 2
dx? ut) El dxz ulL)=M
d? B d? B
~Elull)=F El—ull)=F

where, E: Modulus of Elasticity of the beam
I: Moment of Inertia of the beam
f(x): Distributed load
F: Point load applied at the beam'’s free edge (x = L)
M: Moment applied at the beams’ free edge (x = L)

Using Method of Weighted Residual with a weighing function w(x), we have

HE' & u)- f(x)}w(x)jx o
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Using an integration by parts
g g yp Integration by Parts

Iuv‘z uv —ju'v

Wik — [ £ w(xkx = 0

L d4
= IEId 2 u(x

o dx 0 or fuv=uv-[uv
-
u' v
(x)w O b[EI e u(x) ™ W(x)jx - sz(x)w(x)jx =0
\_Yu_“—\\f/_} \_L_}\_J_} By boundary condition,
3 L %u(o) =0
= Eldd?u(L)w( )- El—u (0w(0) —w(x):ix — [ w(x)dx = 0 Therefore, obviously
- \_Y_} ’ dd 3 u@0)=0
=-F =0 X

W ) i - if(x)w(x)jx o

5 dx

Using an integration by parts again,

q L Integration by Parts
U(X)& w(xjx — [ f(w(xx = 0 fuv'=uv—fuv
OK_Y_“—Y—’ i or Iu'v:uv—juv‘

u' %

= —FW(L)—

dx? dx s o ox?

= —FW(L)—[EliU(X)iW(X*L —JL‘EIi ( x)jx] J:f (x)w(x)Hdx =0

= —Fw(L)- {Eldd%u(L)dix w(L)- Eli(—zzu(o)% w(0)- .:[Elc;j%u(x)dd% w(x)dx} - If(x)w(x):lx =0

d Lo,
FwL)-| ML w)- [El
= Fw(l) { oy ! FNE u(x)dx2

W(X)ij| - Ef(x)w(x):;lx =0

Therefore, we finally obtained

L 2 2
= !)'Eldd7u(x) dd —w(xJx = jf (xw(x)dx + Fw(L) + Mdiw(L) ............................................... Eq.09-2
\ )
Y

Stiffness Matrix (a prime shape with a term of w)

Remember in Chapter 04, we talked that the Galerkin Method uses N (shape function) for w (weighting
function). Then, what will be the shape function?

Euler-Bernoulli's Beam Theorem 09-2
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CAN WE USE PIECE-WISE LINEAR SHAPE FUNCTIONS?

So far, we've only used Piece-wise Linear shape functions. So, why not use it? Well, let’s try.

L 2 2
We know the term (stiffness matrix) J'Eldd—zu(x)dd—2 w(x)x has the second derivatives. By Galerkin
o dx X

Method we’ll use N for w. From the previous exercise we kind of know that the stiffness matrix will become

N d?
like beI e Na(x)WNb(x)jx.

Assuming the shape function N is piece-wise linear, then, let's see what happen if we take the second
derivative of N.

Remember, the piece-wise linear shape function N looks like this.

1

1

1

1

1

1

1

|

1
L
¥

X
Xp-1 A Xp-
Taking the first derivative with respect to x once, d_N looks
X
iN —_—
dx !
° ° ° X
Xp_ x,,\i Xpe
d2
Again, taking the second derivative with respect to x, d_ZN looks
X
° ' ° X
Xaoq X, X,
LY
dx
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The function is called Dirac Delta function and it is not square integrable.

d2

d?
N —_
a(x) dx

dx?

L
Therefore, the term [EI ~N, (x)dx cannot be solved if N is piece-wise linear. We cannot use
0

the shape function.

PIECE-WISE CUBIC SHAPE FUNCTION (HERMITE SHAPE FUNCTION)

Let's review an element in Euler-Bernoulli’'s beam.

d, d,: displacement
6, 6,: rotation

As shown in the figure above, a node at each end has 2 degrees of freedom: displacement and rotation.
Therefore, as one element, there are total 4 degrees of freedoms. The displacement vector has a form as

1
d={"

2

S QO O o

2

Therefore, there are 4 unknowns per element (compared to 2 unknowns per element in the previous 2
order problem). This means we require 4 shape functions per element. So, the question is, what kind of
shape function is that?

The answer is called Hermite Shape Function, which has the following form.

2 3 H—-
Ni=a +bg+cg” +dg (i=1,2, 3,and 4) We'll use element coordinate system for

ease of computation: & in [&1@2] = [— 11].
Since we need 4 shape functions, we eventually

need the following 4 shape functions.
N, =a, +b,&+c,&? +d,&°
N, =a, +b,&+c,&% +d,&°
N, =a, +b & +c, 8% +d,&°
N, =a, +b,&+c,&*+d,&*

Assuming the approximate solution has the following form,

Euler-Bernoulli's Beam Theorem 09-4
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- d d
0=N,d, +&u(x)l\l391 +N,d, +&U(XN462

Then, each shape function must satisfy the following conditions.

Copyright © 2014 Yoji Hosoe

d d d d
Nl(‘:) d_&Nl(E”) Nz(&) d_& 2(&) N3(§) d_& 3(&) N4(‘i) d_E_, 4(&)
& (=1) 1 0 0 0 0 0
&, (=+1) 0 0 1 0 0 0 0 1

Therefore, we can identify the unknown coefficients a,, b,, ¢,, and d,.

-0

For N;
N,(€,)=1
=a, +bg + cl(éij,l)2 + dl(éij,l)3 =1
=a, +b,(-1)+c, (-1 +d,(-1° =1
=a;-b,+c,-d; =1
N,(,)=0
=a, +h&, +c,(&,) +d,(5,)° =0
=a, +b,(1)+c,[)* +d,(2° =0
=a,+b,+c,+d; =0
JEM(E)=0
= dig(al +b,E+c,6% +d,E°
=3
= b, +2c,&, +3d,E2 =0
= b, +2c,(-1)+3d,(-12)° =0
=b, -2c, +3d, =0
EM(E)=0

= i(a1 +b,E+c,8% +d,E°

dg

&=&,

=0

Euler-Bernoulli's Beam Theorem
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= b, +2c,&, +3d,E2 =0
= b, +2¢,(1)+3d,(1)° =0
=b,+2c,+3d, =0

Therefore, solving for unknown coefficients,

1 -1 1 -1](a 1 a, 12
11 1 1(b,| |o _Iba|_|-3/4
0 1 -2 3llc,[ o c,[ ] o
0 1 2 3]|d]| |0 d, 1/4
Therefore, the shape function is,
N, =a, +b,E+c,E2 +d,E° = 1—§§+1g3 - 1(1-&)2(2+g) .............................................. Eq.09-3
2 4 4 4
For N,
N2(§1)20
=a, +b,&; +Cz(‘21)2 +d2(‘21)3 =0
=a, +b2(—1)+cz(—1)2 +d2(—1)3 =0
=a,-b,+c,-d, =0
N2(§2)=1
=a, +b,g, +02(E,~2)2 +d2(a2)3 =1
=a, +b,[1)+c,(1f +d,[1)° =1
=a,+b,+c,+d, =1
d
d_E_,NZ((:l):O
:i(a +b,g+c,8% +d,E? =0
2 2 2 2 -
di ‘izéi
=b, +2c,& +3d,E2 =0
=b, +2c,(-1)+3d,(-1¥ =0
=b,-2c,+3d, =0
Euler-Bernoulli's Beam Theorem 09-6
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:i(a2+b2§+02§2 +d,g® =0
d& €=¢,

=b, +2c,&, +3d,5 =0
=b, +2¢,(1)+3d,(1)° =0
=b,+2c,+3d,=0

Therefore, solving for unknown coefficients,

1 -1 1 -1]fa,] [0 a, 1/2
1 1 1 1]b,| |1 _ Jba| ]34
0 1 -2 3|, Jo c, 0

o 1 2 3|d] |o d,| |-14

Therefore, the shape function is,

N, =a, +b,E+c,&2 +d,E° = %+%§—%§3 = %(1+§)2(2—§) ............................................ Eq.09-4
For Nj
N;(£,)=0
= a, +b,&, +¢,(8, ) +d,(E,) =0
= a, +b3(—1)+c3(—1)2 +d3(—1)3 =0
=a;-b,+c;-d; =0
N;(¢,)=0
= a, +h,8, +¢,(8, ) +d,(8,)° =0
= a, +b3(l)+ c,(1? +d;(1° =0
=a;+b,+c,+d; =0
(%NS( =1
= 9, rbaerc,evd,e?)| =1
dg &=t
Euler-Bernoulli's Beam Theorem 09-7
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= b, +2c,8, +3d,87 =1
= b, +2c,(-1)+3d,(-2)° =1

—b,-2c, +3d, =1

d
d_EJNs(‘:z)_O
:i(a +hE+c,8? +d,E° =0
de 3 3 3 3 -

= b, +2c,&, +3d,E5 =0
= b, +2c,(1)+3d,(1)° =0
=b,+2c, +3d, =0

Therefore, solving for unknown coefficients,

1 -1 1 -1]fag] [0 a, 14
1 1 1 1]|b, 0 b, -1/4
= - =
0 1 -2 3|lc, 1 c,| |-v4
0 1 2 3|d,] |0 d, 14
Therefore, the shape function is,
1 1 1 1 1
N, =a, +b,&+c &% +d,&° :Z_ZF’_Z&Z +Z§3 :Z(l—g)z(ug) ................................. Eq.09-5
For Ng4
N4(§1):0
=a, +b,&; +C4(§1)2 +d4(‘21)3 =0
=a, +b,(-1)+c,(-2)* +d,(-2° =0
=a,-b,+c,-d, =0
N4(‘22):O
=a, +b,&, +C4(§2)2 +d4(§2)3 =0
=>a, +b4(1)+c4(1)2 +d4(1)3 =0
=a,+b,+c,+d, =0
Euler-Bernoulli's Beam Theorem 09-8
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d
d_éNA(Fvl):o
:i(a4+b4§+c4§2+d4§3 =0
di £=¢;
=b, +2c,&, +3d,&2 =0
=b, +2c,(-1)+3d,(-1° =0
=b,-2c,+3d, =0
d
d_aNzt(‘:z):l
= 9, tbrc,e?ede] =1
dg &=L,

=b, +2c,&, +3d,E5 =1
=b, +2c,(1)+3d,(1f =1
=>b,+2c,+3d, =1

Therefore, solving for unknown coefficients,

1 -1 1 -1]fa, 0 a, -1/4
1 1 1 1fb,| |0 3b4_—1/4
0 1 -2 3|lc,] 1o c.| |ya
0 1 2 3]|d, 1 d, 14
Therefore, the shape function is,
1 1, 1 1 1
N, =a, +b,E+c,E2 +d,E° = —Z—Z§+Zg2 +Za3 =Z(1+§)2(§—1) .............................. Eq.09-6

HERMITE SHAPE FUNCTION

These shape functions are called Hermite Shape Functions. In summary,

N, =7 (1-8F@+)  (Eq003)
N, =2+ ef2-)  (Eq.00-4

N, - 20-ef+e)  (Eq.00-5

Euler-Bernoulli's Beam Theorem 09-9
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N, =70+ e (-1 (Eq.006)

Figure below shows these shape functions.

M,(—8,]

Remember the approximate solution is in a form of

a du du
u=N,d,; +d—XN391 +N,d, er—XNﬂ'G2 .

LOCAL STIFFNESS MATRIX

From Eqg. 09-2, we found that the global stiffness matrix is as follows.

- L d2 d2
K= !EI e u(x) e w(x pix

Remember,

u(x) = G(x) = > d,N, (x) and

W(X) ~ 2 dsNg (X)

Therefore, the stiffness matrix in terms of N will be

- L d2 d2
K= !EIdX—ZNA(x)WNB(X)dX

In element space,

Euler-Bernoulli's Beam Theorem
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_ Xa 2 2
Re =k, )= [B1- Na(x);7Nb(x)dx

L dx
' x interms of & is, from interpolation
Use the change of variable formula, relationship,
X,
X=X Llg-t,)
. d? d !
= ks )= (K(E) 5N, (x(E)) - x(e)ae Eoh
dg dg X, — X,
= X=Xy = 1_(_1)@ ( 1))
Then, using the chain rule, X, - % Xy + X,
=X = &
9 © o2 2 2
N, —~ N
[ e ]_ o dg? : dx? »(€) d Therefore,
= k& |= jEl . . —x(g)g
= Gl O . Ln t
de? dg? dg 2 2

(where, h=x, —x;)

Because d_x = D ........................................................................................................................... Eq.09-7
dag 2
. 4 g2 g2 2 3
= ha - fer o m ) e 2 o

_8EIf_ d? d?
=13 _1E| de? a(é)FNb(ahé

So, whatis N, and N, ? Are they same as what we previously found Hermite shape Functions? Answer is
no. Remember, our interpolation function has the following form.

() Nd+d (x)\139+Nd+ (x)\l4

Therefore, we have N in the following form.

N=N()=[N: N Ng NoJ=[N(x) Ng(x) No(x) N, ()

That means,
q q we use bold N (N) in order to
((x) = N, d, + —UN391 +N,d, + _UN492 distinguish it from the
dx dx previous individual shape
Y YooY Y function N.
N, N, N, N, (Nareinglobal)

In element space,

(&) = N,d, + — & u(EN,0, +N,d, t e (g)N4

Euler-Bernoulli's Beam Theorem 09-11
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dx h du hdu
Because — =—,0r — = ——
g 2 dg 2 dx
N duh duh
=N,d, + ——N,0, +N,d, —N,0,
u(&) ll+dX2 3 +d 5

T -

N, N, N, N, (N arein local.)

Therefore,

NZNG)=IN, N, Ny N D= e N0 M,(0) ()

The second derivative of N is,

d? d? h d? d? h d?
TNO- M) B ) ) B

Each component of the second derivative of N is,

dZN _d2N _d*[1 3
v 2 4

1.5] 3
de? de? b de? §+Z§}_2§

h( 1 3
Eﬁ—i & }ZE(—EJFEEJJ

d2N _dZN _dz[l 3, 1 } 3
3

2 2 2
&\ _hd hd
de? 2 de? 2.dg?

ae ™ T a2 At et

d? h d* hd*[ 1 1, 1 1 h(1 3
—N4 = ——N4 = —— —_— =

daZ 2 daZ 2 daZ
Now, find each component of the stiffness matrix.

8EI+1 d?
ks )- _1 da "de?

SV E

18RI, .
h* (3

.1 SEIY_ d? d?
ke, |= h3£adaN“&?

el a2

N,d&

(;EI [1 (_ 1)] _ 12EI

-1

N,dg

Euler-Bernoulli's Beam Theorem
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- 1 flee? - ehe

oo -5 -2

.1 SEIY_ d? d?
[k13]: hTLEIE'\h FNsdﬁ

8EI %3 3
:h—sl(f}(‘ai}’@

18EI(1,, )"
--5 (Eg j _

Eh-(-1)=-22

. h? h?
[kf4] 8EII Id 2 1%N4d§

8EI+l

SR

3EI+l

- 71(3a +eHe

:E(§3+1§2j =EK1+1]—(—1+EH=@
h? 2° ), p L2 2/} n

.1 SEIt_ d? d?
ke, ]= = JlEIFNZFMdé

+1 2
_ SEI d? N1d_2N2d§:6_I§I
T he Sodg? T dg h
.1 SEI' d2
ke, ]= j | LN,z
het de?
8EI*h( 1 3
“h2 [—;u] ( é}ﬁ
EI +1
3E-1
=2 (a )*de

El *El 4EI
Zh(g _3g2 +q _Zh(s 3+1)-(-3-3-1)]= RS

Euler-Bernoulli's Beam Theorem

09-13


http://www.3dwhiffletree.com/FEM

Step by Step Finite Element Method by http://www.3DWhiffletree.com/FEM

+1 2
] 8EI 4= d? de_2
,1 dé da

8El *h 1 3
- 553

- Jloe e

el 1.,
=T (é —Eé J

ks,

+1

-1

8EI < d? d?
] E 2 2
71 de?  “ dg

—@”DK 229l
h® 2

E| +1
" 2h (

ke,

1+ 3E)1+3EHE

-1

__El *1(% _1)j§

Elf1,, .\ _
:‘%(55 ‘éj‘l -

8EI d d?
e e

1

8EI**_ d? d?
T3 E 2 1 2 '8
h® % dg dg

+1 2

I:kEZ] 8EI EI d N3 d_2
71 dg? " dg
8EI +1 2 2

= —3 El d 2 N2 d—z
h® °,  de d¢

.1 SEIf_ d? d?
T

S IEEE

18RI, .
he (3~ )

3

h3

1

- (-1)-

N,dé

éjé

o2

N,dg

%Jdi

(3

dg

12EI
h3

N,dg

dg

Copyright © 2014 Yoji Hosoe
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- 8 e

-1

8EI

h® 7

EI

-1

_El H(gg +3EHe

83)

2
de

—N,d
dEJ Sdag 4 Fv

EATEERS

( 3¢)1+3epe

+1

G |

.1 SEIf_ d? d?
ke, ] = h—3:[1EIEN4FN1d§
+1 2 2
BEIfg O\ @\ 4 _ GE!
h3 % déz d(iz h2
.1 SEIT_ d? d?
[k42 :h_3£ d(iz N4 d(iz NZdE_v
8EI* _ d? d? 2E|
=— [El—N, —N,d¢ = —
h® % dg dg h
.1 SEIf_ d? d?
ke, ]= = JlEld& N4EN3d§
8EI*_ d? d? 6EI
=— [EI—N, —N,ds = ——
h3 £ d&JZ 3 dE_,z 4 é h2
.1 SEIf_ d? d?
[k44] h3 4 d& N4 EN4d‘i
_ 8EIfh
- 33 355
EI +1
(3¢ +1)°de
2h71
+1
El 4E|
3 3 =—|B3+3+1)-(-3+3-1)|=—
- = (et 432 +&L (B +3+1)-(-3+3-1)]==-

Therefore,

Copyright © 2014 Yoji Hosoe
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[ 12EI BEI 12E 6EI ]
K kG kG ky] | N’ h? h h?
e Le e .| | EEL 48 8Bl 2B
kZl kzz k23 k24 h? h h2 h
[ke]: i 12El 6EI 12E| 6EI
kgl ng k§3 k§4 — h3 —h—2 h3 _h_z
Ko ke Ko ki) | 6EI 2E1 _6EI 4EI
L h? h h? h
Or, in a more common form,
[ 12 6h -12 6h |
. 6h 4h? - 6h 2h?
[ke]= e — Eq. 09-8
-12  -6h 12 - 6h
| 6h 2h? -6h 4h? |

LOCAL FORCE VECTOR

From Eqg. 09-2, the RHS will be a force vector.

f=If (el Full)+ M2 ()

Again, using the weighing function as w(x) ~ > dyN; (x), it can be written as

_ L
f = [f(X)Ng (x)dx + FNg (L) + Md—d)(NB(q (Note > d, term factored out to stiffness matrix.)
0 x=L

Note that terms FNB(L) and MdiNB(x* are boundary condition. To develop general force vector, let's
X x=L

forget these terms. So, now we have,
_ L
f= J'f (XN (x x
0
In element space,
lie }= 100N, (xix

Using the change of variable formula,

Euler-Bernoulli's Beam Theorem 09-16
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1= b, e Exoe

Because d_x = E (Eq.09-7)
g 2

fi )= [rema e

In the same way we did for the stiffness matrix, we define N for N; as
h h
N=NG)-IN, N, Ny NI M0 TN () N,(0) ()

Since the force vector contains a function f(z’;), we cannot simplify it further. Let's do some examples.
EXAMPLE (SIMPLE GENERAL CASE WITH CONSTANT P)
Let's consider the following very simple example. We choose f(x), F, M as follows:
f(x) = p (therefore, f(&,) =p) where, p is constant
F=0
M=0

Therefore, the Euler-Bernoulli’'s beam problem now looks like this.

u(x)
f(x) = p = constant
d
d
/ v v \ 4 v \ 4 \ 4 v v
N
e
s L
Each component of force vector is,
+1
{fl} = 2 Jf(i)\ll(i)di
-1
_ ET 1_§§+1§3 £ See Eq. 09-3 to Eq. 09-6 for N, through N,
2 71p 2 4 4

Euler-Bernoulli's Beam Theorem 09-17


http://www.3dwhiffletree.com/FEM

Step by Step Finite Element Method by http://www.3DWhiffletree.com/FEM Copyright © 2014 Yoji Hosoe

+1

_ph(l, 3. 1.
_2[25’ 8g +16§j

-1

_phyf1 3, 1) (. 1.3 1)/ _ph
2|l2 8" 16 2 8 16)| 2

e, 1 1. 1
4 (45’ 8° 12° +16§j
_ ph? (1_1_ 1. 1) (_1_1+i+ 1] _ph®
T4 |l4 8 12 16 4 8 12 16)| 12
fu)= 2 JHEN, e

hj( T jdé

_phf1,38 1) ( 1,3 1)/ ph
2|\2"8 16 28 16)| 2

f- 5 [N e

_phf1 101 1) (1 1 1 1))  ph®
4|72 8"12"16) (4 8 12 16 12

Therefore,

Euler-Bernoulli's Beam Theorem 09-18
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ph
2
fe ph?
. fe 12
fiel= P Eq. 09-9
3 ph
fy 2
_ph?
12

Therefore, using Eq. 09-8 and Eq. 09-9, the matrix form is,

{fae } = [kab ]{db}

Or,
ph
2 (12 6h -12 6h |(d,
h2
p12 . 6h 4h? —6h 2h? ||6,
i T et Eq.09-10
ph ~12  -6h 12 —6h||d,
2
ph? | 6h 2h? - 6h 4an? |0,
12

The value p, h, E, and | are per element. The matrix form is
still valid if these values vary for different elements

The global matrix form can be formed from element matrix form as

{FA } = [KAB ]{dB}

The assembling global matrix is described in the figure below.
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If‘{1n
Iﬂc{fin
Iﬂ‘{E.n
K4n
.a]- &
AB Ke.
Iﬂ‘{Tn
K.E” n x n Matrix
: (n=2n, +2)
I‘{I'II'I

e
s
s
n x 1 Vector
[T ) (n=2n,+2]
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EXAMPLE 1 (CONSTANTE, |, and P)
As the first example, let's consider all values are constant, that is,

E,=E,=E, =E, =1

P, =P, =P; =P, =-1
Let's consider 5 nodes, 4 element problem with each size equal to one, that is,
h,=h,=h;=h, =1 (Therefore, L = 4)

The figure below summarizes the problem.

u(x)
fx) =p=-1 (Al elements) {:5_:11 (Al elements)
v
7
7 S S S W :
7
A 1 1 1 1

Exact Solution

Because of constant properties throughout the beam, we have exact solution for this problem.

u(x) = px* (Xz _ALx + 6L2) Refer to any textbooks of
24EI mechanics of materials

The deflection at the free-end of the beam (x =L = 4) is,

u(4) = 2_42;1(;) (42 — 4(4)4)+6(4) ) =-32

FEM Solution

We use excel to solve the matrix equation.

First, let's setup the cells for each property for A B c D E
each element. 14 Element 1 2 3 4
15 E 1 1 1 1
16 I 1 1 1 1
17 h 1 1 1 1
18 o -1 -1 -1 -1
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It may be easier if you define names for the above
variables.

Using Eg. 09-8, compute stiffness matrix of each
element.

Je

Insert
Function -

Insert

Used =

Page

Copyright © 2014 Yoji Hosoe

Layout Formulas Data Review

Function Library

View

Mare

Developer

T P80 R @@

AutoSum Recently Finandial Logical Text Date& Lookup & Math
Time > Reference ~ & Trig * Functions~ | Manager

=

Name

Acrobat

2 Define Name -
[ rrrre—

i Use in Formula -

v22 - ] :a L
A B c D £ £ G H 1 ] .
1 ExactSolution FEM 7m L
2 p= -1 x u(x) X d | Exact | Delta - C
3 =1 0 o o 0 0 0 -h2
4 =1 0.5] -0.91927 1| -3.375] -3.375 0 n3 L
5 = 4 1 337 2 -11.33) 1133 0 ha N
6 15| -6.96094 3[ -21.38] -21.3¢] 0 n L
7 2] -11.3333 P T 0 "2
8 25| -16.2109 -
9 3 2137 B [
10 3.5] -26.6693 1
1 4 33| 1 [
: I
14 Element | 1 2 3 4 -+
15 E 1 1 1 1 -p# r
61 1 1 1 1 Paste Names.
17 h 1 1 1 1 s
18 p -1 1 1 1
SUM - X v | =(12)*_E1*_11/_h1r3
A B 5 D E F
21 e =~
22 ={12)* E1* 11/ h1~3 -12 6
23 K1= 5] 4 -6 2
24 -12 -6 12 -6
25 6 2 -B 4
26 " A
27 -~ =
28 12 6 -12 6
29 K2= 5] -6 2
30 -12 -6 12 -6
31 6 2 -6 a4
22 " A
33
~ =
34 12 6 -12 6
35 K3= 6 -6 2
36 -12 -6 12 -6
37 5] 2 -6 4
38 L ",
39
- =
a0 12 5] -12 5]
41 Kd= 6 -6 2
42 -12 -6 12 -6
43 5] 2 -6 4
a4 "~ J

Euler-Bernoulli's Beam Theorem

09-22


http://www.3dwhiffletree.com/FEM

Step by Step Finite Element Method by http://www.3DWhiffletree.com/FEM

Using Eg. 09-9, compute force vector of each
element.

Now, assemble a global matrix from each local
element stiffness matrix.

Be careful that you have 4 cells overlapping in one

local matrix with another local matrix. k&=

Same thing for global force vector.

Now, we have the global matrix equation like this.

Copyright © 2014 Yoji Hosoe

K & f| = pl*_h1/2
C D E
52 -0.5
53| F2= -0.08333
54 -0.5
55 0.083333
56
57
58 -0.5
59| F3= -0.08333
60 -0.5
61 0.083333
62
63
64 -0.5
65| Fa= -0.08333
66 -0.5
67 0.083333
‘\\
12 5 -12 6 0 0 0 0 0 0
6 4 -6 2 0 0 0 0 0 0
-12 6 24 of -12 6 0 0 0 0
6 2 0 8 -6 2 0 0 0 0
0 o -12 -6 24 o -12 6 0 0
0 0 6 2 0 8 -6 2 0 0
0 0 0 o -12 -6| 24 o -12 6
0 0 0 0 6 2 0 8 6 2
0 0 0 0 0 o -12 -6 12 -6|
0 0 0 0 0 0 6 2 6 4
_/
'S 3
-0.5
-0.083
-1
0
F_G= -1
- = -
0
-1
0
-0.5
0.0833
L -
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-0.5 (12 6 -12 6 0 0 0 O O 0 |fd,
-0.083 6 4 -6 2 0 0 0O 0 0 o006
-1 -12 -6 24 0 -12 6 0 0 O0 0 |ld,
0 6 2 0 8 -6 2 0 0 0 o0]le,
-1 | |0 0 -12 -6 24 0 -12 6 0 0 |/d;
o [|o o 6 2 0 8 -6 2 0 0|,
-1 0 0 0 -12 -6 24 0 -12 6 |[d,
0 o 0 O O 6 2 0 8 -6 2|6,
-05 0O 0 O O 0 0 -12 -6 12 -6||ds
0083 |0 O O O O O 6 2 -6 4|6

Remember the under-constraint problem talked in Chapter 07, we cannot solve this with 10 unknowns.
However, from the essential boundary conditions, we know

Therefore, we are only using the following portion of the global matrix form.

/d_=n
05+ f1p 6 —12 60600000 Hd+ -8 =0
00836 62 0 0 0 0 00 e.'/

C =i |12 er 24 0 S12°6 0 0 0 0!,

101l |6 20 8 -6 2 0 0 0 0.[46, |

-1 |0 01-12 -6 24 0 -12 & O 0!ljd;}

v 0!'[T[0 0,6 2 0 8 -6 2 0 0 1[}e

=11l |0 010 0 -12 -6 24 0 -12 6/d,

104 |0 0,0 0 68 2 0 8 -6 216,

1-051 |0 0'0 0 0 0 -12 -6 12 -6jds|

oos3)] [0 0._0_0 _0__0o_6 _2_-6_4lls}

Then’ Inverse Of K (Only hlgh“ghted port|0n Of /0.3333 0.5 0.8333 0.5 1.3333 0.5 1.8333 0.5 R
original K) can be computed as: 0.5 1 15 1 25 1 35 1
0.8333 1.5 2.6667 2 4.6667 2 6.6667 2
K= 0.5 1 2 2 4 2 6 2
1.3333 2.5 4.6667 4 9 4.5 13.5 4.5
0.5 1 2 2 4.5 3 7.5 3
1.8333 3.5 b6.6667 6 13.5 7.5 21.333 8
0.5 1 2 2 4.5 3 8 4
M A
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Therefore, displacement vector is,

=1

Below plot compares FEM results and exact solution.

ol N\
\

-3.375
-6.167
-11.33
-9.333
-21.38
-10.5
-32
-10.67

(R U )

w
v
1
A,
W

-~

D O D 8 @ o D oo
o, o kS

=fi—5-Node FEM

— Exact
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The entire workbook of this problem like below. You can download Excel file from the following link.

http:www.3dwhiffletree.com/FEM/download/Chapter09-1.xIsx

A E C [u] E F G H | J K L| M N oO|PFP | O R g T 1]
1 | Exact Solution FENM
2 p= -1 H u[x] H d | Exact| Delta ;
3 E= 1 [ 0 0 0 0 0 : : . .
4 = A 05] -0.9193 1| -2.28] 233 1
5 L= 4 1| 3378 HIEEEEE [
£ 15| -6.9609 3| -n4] 24 0 o k
7 AIEEEE AR EEE 0
g 28| B2 .\
g 3] 21378 2 PR
10 35| -26.669 o \ S
1l [ -3z =
12 .\\
12 -z
14 Element 1 2 3 4 \\
15 E 1 1 1 1 =4 '
1 | 1 1 1 1
17 h 1 1 1 1 =3
12 p -1 -1 - -1
1
0
] . - I ™ U
2 12 E -z E 12 B -2 3 0 0 0 i i 0 di=0
N Kl [ 4 5 2 [ 4 & z i i i i} 0 i thel=1
4 12 -E 2 -E Az D ol -z [ 0 0 0 0 dz
5 £ z & 4 3 z i a & z i i i} o thez
25 - < k_G= i NIEE B 24 ol Az E 0 0 da
7 _ . 0 0 g z 0 3 & z 0 0 thes
] 12 E -z E 0 0 i o 2 B ol -z [ dd
M K- B 4 - z i i 0 i 3 z 0 3 & 2 thed
] 12 -E 2 -E 0 0 0 0 i ol 12 & 12 & d5
H E z £ 4 0 0 0 0 0 0 E Ik 4 theh
12 - - A y
] ~ . R .
LT 12 E -z E 05
5 K3= B 4 - z 008
I 12 -E 2 -E -1 032 05 083 05 132 058 182 08
7 E z £ 4 0 05 1 15 1 25 1 35 1
] - < F_G= A 08r 15 ZET I 4ET 2 EBET 2
39 . 1 of ke 05 1z @ 4 @ B 2
40 12 E -z E -1 122 28 4.7 4 3 4F 136 45
4 K4 B 4 - z i 08 1 z I 45 3 75 3
] 12 -E 2 -E 05 122 35 EET E 128 7F 213 E
43 E z £ 4 0.08 05 1 z I 45 k: E 4
44 . 4 N :
45 338 dz
45 08 17 the
47 | Fi= | -0.0833 1.3 da Mode d
4z 08 d= 933 [ thed 1 0 0
43 008332 4 dd z 1 328
1] 105 thed 3 Nz
3 32 d5 4 3 -4
52 05 07 thed 5 4 .3z
53 | Fz= | -0.0833
54 05
i3] 008332
BE
57
] 0.8
59 | F3= | -0.0833
&0 0.8
£l 008332
(-]
(3]
4 0.5
65 | F4= | -0.0833
BE 05
ET 008332
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EXAMPLE 2 (VARIABLE h)

This time, using the same example problem but let's use different mesh sizes. Other properties remain the
same as:

P, =P, =P3 =P, =1-

New meshes are

—

h,=0.4
h,=1.4
-
h, =0.6
h, =16 (Therefore, L = 4)

—

The figure below summarizes the problem.

u(x)
f)=p=-1  (All elements) {F—zll (All elements)
7
7
7 S S S S x
; 0.4 1.4 0.6 1.6

Exact Solution

We still can find exact solution for this problem because all other properties are constant throughout the
beam. Total L has not changed, therefore, the deflection at the free-end of the beam did not change.

u(4) = 2_42;(;) (42 — 4(4)4)+6(4) ) =-32

FEM Solution
The last Excel spreadsheet was formulated so | Element
that it works with variable h. We’ll enter new h E 1 1 1 1
values as follows. :
h 0.4 1.4 0.6 1.6
p -1 -1 -1 -1
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The Excel spreadsheet will automatically build a - .
new stiffness matrix and give you this result. -0.598 4e— d,

-2.891
9,509 4— d:
d= ) -8.892
1521 fe— d
-9.984

32 de— @
L -10.67

Results are plotted below.

-10
-15

== 5-Node FEM
50 = Exact

AN
N\

@

-35

You can download Excel file from the following link.

http:www.3dwhiffletree.com/FEM/download/Chapter09-2.xIsx
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EXAMPLE 3 (VARIABLE p)

Now, we change load p this time. Everything else is same as Example 1. Therefore,

—

E,=E,=E; =E, =1
L =1,=1;=1,=1
p, =-1.5
- p,=-05
p; =1.25
p, =-3
h,=h,=h;=h, =1 (Therefore, L = 4)

The figure below summarizes the problem.

u(x)
p=-3 { F—:ll (All elements)
p=-15
; p=-0.5
Y v ; 4 b4
9 ® ® ® @ X
/ A A
/] 1 1 1 1
p=125
FEM Solution
Enter p values for each element. Element 1 2 3 4
E 1 1 1 1
I 1 1 1 1
h 1 1 1 1
p -1.5 -0.5 1.25 -3
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The Excel spreadsheet will automatically build a
new stiffness matrix and give you this result.

Nastran Solution

Since we cannot find an exact solution this time (it's not impossible to solve the equation by hand though),

( 3.875 %— d.
-7.25
13.714— d,
= ) -12.08
27.39 4— 4,
-14.88
42,64 4— d,
| -15.38

this time | want to compare our FEM results with Nastran solution. Below shows the results.

Mode 2
Coord(0)=1.,0,0.
DefCS=0 QutCS5=10
Display CSys =10

T2 Translation = -3.875

Mode 3
Coord(0)=2,0,0.
DefCS=0 QutCS5=10
Display CSys =10

T2 Translation = -13.70833

Node 4
Coord{0)=3,0,0.
DefCS=0 QutCs5=10
Display C5ys =10

T2 Translation = -27.38542

Mode 5
Coord(0)=4.,,0,0.
DefCS=0 QutC5=0
Display C5ys =0

T2 Translation = -42.63542
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20 ‘.‘.. ------- 5-Node Nastran
e B 5-Node FEM

You can download both Excel file and Nastran files from the following links.

Excel File:
http:www.3dwhiffletree.com/FEM/download/Chapter09-3.xlsx

FEMAP neutral file (if you have FEMAP)
http:www.3dwhiffletree.com/FEM/download/Chapter09-3.NEU

Nastran Dat file
http:www.3dwhiffletree.com/FEM/download/Chapter09-3.DAT
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EXAMPLE 4 (VARIABLE E)

We change E values this time. Everything else is same as Example 1. Therefore,

—

E, =25

E, =05

h,=h,=h;=h, =1 (Therefore, L = 4)

The figure below summarizes the problem.

u(x)
f(x)=p=-1  (All elements)

e

| E=25| E=05| E=15 E=3

Y 1=1 yl=1 ¢y I=1 ¢ I=1 ¥y

® @ @ @ L X

e

/] 1 1 1 1

FEM Solution
Enter E values for each element. Element 1 2 3 4
E 2.5 0.5 1.5 3
I 1 1 1 1
h 1 1 1 1
p -1 -1 -1 -1
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The Excel spreadsheet will automatically build a

new stiffness matrix and give you this result. (

135 +— d,
-2.467

74—+— d
d= -8.8

< =

-16.67 f+— d,
-9.578
-26.29 1+ d
L -9.633 |

Nastran Solution

Since we cannot find an exact solution for such problem, again | want to compare our FEM results with
Nastran solution. Below shows the results.

MNode 2 Mode 3 Node 4 Mode 5
Coord(0)=1,0,0, Coord(0)=2.,,0,0 Coord(0) =3, 0,0, Coord(0)=4,0,0,
DefCs=0 QutC5=10 DefCS =0 QutC5=10 DefC5 =0 OutCs5=10 DefCS =0 QutCs=10
Display Coys =10 Display CSys =0 Display CSys =0 Display CSys =0

T2 Translation = -1.35| | T2 Translation = -7.4 T2 Translation = -16.67222 | | T2 Translation = -26.29167
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You can download both Excel file and Nastran files from the following links.

Excel File:
http:www.3dwhiffletree.com/FEM/download/Chapter09-4.xlsx

FEMAP neutral file (if you have FEMAP)
http:www.3dwhiffletree.com/FEM/download/Chapter09-4.NEU

Nastran Dat file
http:www.3dwhiffletree.com/FEM/download/Chapter09-4.DAT
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EXAMPLE 5 (VARIABLE 1)
We change | vlaues this time. Everything else is same as Example 1. Therefore,

—

E,=E,=E,=E, =1

h,=h,=h;=h, =1 (Therefore, L = 4)

The figure below summarizes the problem.

u(x)
f(x)=p=-1  (All elements)

d

71 E=1 E=1 E=1 E=1

Y Il=4 y1=8 y I= v 1=01 vy

® @ @ @ L ] X

]

A 1 1 1 1

FEM Solution
Enter | values for each element. Element 1 2 3

E 1 1 1 1
| 4 8 0.25 0.1
h 1 1 1 1
p -1 -1 -1 -1
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The Excel spreadsheet will automatically build a

new stiffness matrix and give you this result. [ _0.844 %— d,
-1.542
-2,609—4— d;
d= ) -1.938
-7.38 $+— d,
-6.604
-15.23 — d.
L -8.271

Nastran Solution

Since we cannot find an exact solution for such problem, again | want to compare our FEM results with
Nastran solution. Below shows the results.

Node 2 Node 3 Node 4 Node 5
Coord(0)=1,,0,0. Coord(0)=2,0,0. Coord(0)=3,0,0. Coord(0)=4,0.,0
DefCS5=0 OutC5=0 DefC5=0 OutC5=0 DefC5=0 OutC5=0 DefC5=0 OutC5=0
Display CSys =0 Display CSys =0 Display CSys =0 Display CSys =0

T2 Translation = -0.84375| T2 Translation = -2.609375| |T2 Translation = -7.380208 | | T2 Translation = -15.23438 |
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L)
.
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.
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-12

-14

-16

You can download both Excel file and Nastran files from the following links.

Excel File:
http:www.3dwhiffletree.com/FEM/download/Chapter09-5.xlsx

FEMAP neutral file (if you have FEMAP)
http:www.3dwhiffletree.com/FEM/download/Chapter09-5.NEU

Nastran Dat file
http:www.3dwhiffletree.com/FEM/download/Chapter09-5.DAT
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EXAMPLE 6 (VARIABLE ALL)

This time we use all variables together that were used in Example 2 through 6.

E, =25
E, =05

E,=15

V[

h, =16 (Therefore, L = 4)

—

The figure below summarizes the problem.

u(x)

p=-15
E=25
=4

p= -05 E=15 E

WO

. V¥ E=05 | :0'25" 1=0.1 v
——— « 3 o x
/ A A
104 14 0.6 16

p=125
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FEM Solution
Enter E, I, h, and p values for each element. Element 1 2 3 4
E 2.5 0.5 1.5 3
I 4 8 0.25 0.1
h 0.4 1.4 0.6 1.6
p -1.5 -0.5 1.25 -3

The Excel spreadsheet will automatically build a
new stiffness matrix and give you this result.

[ 0.112 3— 4.
-0.546
-3.453 — d

d= | -3.368

-8.485 4 4,

12.2

136,19 +=— d.

L -19.02 |

Nastran Solution

Since we cannot find an exact solution for such problem, again | want to compare our FEM results with
Nastran solution. Below shows the results.

Node 2
Coord(0)=04,0,0
DefCS=0 OutC5=0
Display CSys =0

Node 3
Coord{0}=15,0,0
DefC5=0 OutC5=10
Display CSys =10

Node 4
Coord(0)=24,0,0.
DefC5=0 QutC5=0

Node 5
Coord(0)=4,0,0
DefCS=0 OutC5=10

T2 Translation = -0,111853

T2 Translation = -3.453373

Display CSys =0

T2 Translation = -8.485253

Display CSys =10
T2 Translation = -36.1916

Euler-Bernoulli's Beam Theorem

09-39


http://www.3dwhiffletree.com/FEM

Step by Step Finite Element Method by http://www.3DWhiffletree.com/FEM

Copyright © 2014 Yoji Hosoe

O
.....
.

You can download both Excel file and Nastran files from the following links.

Excel File:
http:www.3dwhiffletree.com/FEM/download/Chapter09-6.xlsx

FEMAP neutral file (if you have FEMAP)
http:www.3dwhiffletree.com/FEM/download/Chapter09-6.NEU

Nastran Dat file
http:www.3dwhiffletree.com/FEM/download/Chapter09-6.DAT

------- 5-Node Nastran
B 5-Node FEM

Euler-Bernoulli's Beam Theorem
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MORE GENERAL FORMULA WITH F AND M IN ELEMENTS

Now, consider the case if we have force (F) and Moment (M) in elements. From the previous pages, the
global force vector was,

_ L
f = [0 wx)x + Fw(L)+ Mdiw(L) per Eq.09-2
o X
And also we did

f:_l'fx)\l (X)ix + FN, ()+Md_dXNB(x)1

x=L

The term NB(L) and diNB(x* are both 1 (because of boundary conditions and property of the shape
X x=L
functions). This is true for each element if there are F, and M, at the 2™ node.

Therefore, we simply just need to add F, and M, into the force vector.

Therefore, the matrix form of {f;}z [kab ]{db} becomes,

ph
2 0 12 6h ~12 6h (d,
h2
p12 0 £l 6h 4h? —6h 2h? |6,
+ ot N N S Eq.09-11
ph F, ~12  -6h 12 -s6h||d,
2
oh? | (M | 6h 2h2  —6h  4h? (0,
12
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EXAMPLE 7 (VARIABLE ALL WITH FORCES AND MOMENTS)

In this example, we use the same values as Example 6 plus additional forces and moments as follows.

F=-3
F=1
i F=2
F, =4
[ M, =5
M, =2
i M, =3
M, = -6

The figure below summarizes the problem.

u(x)

p=-15
E=25

p=-05 E=15

Il
N
%
m
I
o
o
<
I
o
[
ol
I T
o
o w

“e—eE= o o X
/ =8 4 \
104 14 0.6 16

p=1.25

+
F=-3 F=-4
d
A M=5 M=-2 M=3 M= -6
7 Vv 1

g
d

F=1 F=2
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FEM Solution

Create 2 more rows to the table so that you
can enter F and M values for the each
element.

Modify element force vectors to incorporate
additional F and M.

Rest of formulas will remain the same and the
Excel spreadsheet gives you the result.

Nastran Solution

Copyright © 2014 Yoji Hosoe

Element 1 2 3 4
E 2.5 0.5 1.5 3
| 4 8 0.25 0.1
h 0.4 1.4 0.6 1.6
p -1.5 -0.5 1.25 -3
F 3 1 2 -4
M 5 -2 3 -6

A B E
45
A6 -0.3
47 Fl= -0.02
a8 = pl* hif2+ F1
a9 5.02 )
50
51
52 -0.35
53 F2= -0.08167
54 0.65
55 -1.91833
56
57
58 0.375
59| Fa= 0.0375
60 2.375
61 2.9625
62
63
64 24
65| Fa= -0.64
66 6.4
67 5.36
[ -0.1924— d,
-0.938
7.398<4— d,
d= ) -8915 |
-20.35 =+— |_'|;
-33.24
1125.5 <— d.
| -89.14

Since we cannot find an exact solution for such problem, again | want to compare our FEM results with

Nastran solution. Below shows the results.
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MNode 2 Mode 3 Mode 4 MNode 5
Coord{0)=04,0,0 Coord({0)=18,0,0 Coord{0)=24,0,0, Coord({0)=4,,0,0.
DE‘FCS = |:| GLIt':S = |:| DE‘FCS = |:| GLItCS = |:| DE‘FCS = |:| OLItCS = |:| DE‘FCS = |:| OLItCS- = |:|
Display Csys =10 Display CSys =0 Display CSys =0 Display CSys =0

T2 Translation = -0,192387 T2 Translation = -7.398373 T2 Translation = -20.35445 [ | T2 Translation = -125.5404

------- 5-Node Nastran

B 5-Node FEM

-100

-120

-140

You can download both Excel file and Nastran files from the following links.

Excel File:
http:www.3dwhiffletree.com/FEM/download/Chapter09-7.xIsx

FEMAP neutral file (if you have FEMAP)
http:www.3dwhiffletree.com/FEM/download/Chapter09-7.NEU

Nastran Dat file
http:www.3dwhiffletree.com/FEM/download/Chapter09-7.DAT
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FORCE AND MOMENT AT BOTH ENDS

If there are forces and moments at both ends of element, what will we get? The answer is a simple

summation.

The previous example was
intentionally done with force and
moment at just one end to avoid
confusion which node forces and

moments belong to.

Therefore, we simply need to add F, and M, in the first 2 rows of force vectors (F, and M, in the last 2

rows which is same as Example 7).

ph

2 F 12 6h -12 6h |(d,

h2

p12 M| | 6h 4h?>  —6h  2n |6,

+ T T Eq.09-12

ph F, 12 -eh 12 -6h||d,

2

phz| (M, | 6h 2h*  —6h  4h? ||,
12
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